Causal Science

Advanced measurement and attribution for data-driven decisions

The tiles below are short, interactive simulations of the core problems we fix: how attribution models shift credit, how past holdout tests calibrate current MTA, why A/B tests reveal true incrementality versus correlation, and where returns saturate and effects decay. Youโ€™ll also find links to the causal methods toolkit and a membership-lift triangulation analysis.

Turn attribution into confident budget decisions with clear, auditable attribution for confident allocation.

Step 1

Data & QA

Step 2

Baseline Paths

Step 3

Model & Calibrate

Step 4

Budget & Scenarios

Step 5

Handoff

Answers You Get

  • True contribution by channel/tactic (not just last-click).
  • Assist & sequence effects capturedโ€”top/mid-funnel included.
  • Defensible budget-shift recommendations with uncertainty notes.
  • Stable rules for windows, decay, and groupingโ€”no whiplash.

What I Deliver

  • Documented MTA: Shapley & Markov path models with a rules fallback.
  • Calibration to ground truth & tests; reconciliation with MMM.
  • Scenario planner to preview reallocations before spend.
  • Code + notebook + one-pager for finance & leadership.

Your Stack or Mine

  • Python or R implementation; BigQuery/SQL-friendly extracts.
  • Excel option for cell-by-cell transparency if preferred.
  • No black boxes, no vendor lock-inโ€”everything auditable.

A simple change in the attribution model can dramatically shift budget decisions. Explore how different models assign value across a customer journey.

Attributed Revenue

Reconcile walled gardens and see real contribution across channels.

Methodologies
Deduplicate
Remove cross-platform overlap
Anchor to Tests
Apply incrementality multipliers
Model Integration
MMM coefficients for macro effects
Bayesian Weighting
Weight by confidence & recency
Path Reconstruction
Rebuild calibrated journeys
Validate & Monitor
Compare to holdouts
๐Ÿ“Š Before Calibration
ChannelClaimedROAS
Facebook$75k3.00
Google$60k3.00
TikTok$40k2.67
Total Claimed$175kOverlap 75%
ROAS = platform-reported returns (claimed รท spend).
โœ… After Calibration
ChannelTrueiROAS
Facebook$43k1.71
Google$34k1.71
TikTok$23k1.52
Totals$100k
iROAS = calibrated contribution (true รท spend).
๐Ÿ’ก What this shows
Before: platforms collectively claim $175k against $100k in actual sales (75% overlap).
After calibration: channel contributions are reconciled to truth, and iROAS reveals real efficiency versus platform-reported ROAS.

Platforms like Facebook, Google, and TikTok can claim the same sale. Watch how their claims can add up to more than actual revenue. This is why calibration exists.

Ground Truth: Total Sales$100,000
$100k
Facebook Claimed$0
Google Claimed$0
TikTok Claimed$0

Prefer a step-by-step exercise? Open our simple walkthrough โ†—

A Calibration Exercise

Use past holdout data to calibrate MTA and reveal true campaign impact.

Last Quarter's Holdout Test (Ground Truth)
Actual Conversions (from Test)600
MTA-Attributed Conversions (during Test)800
This Quarter's Attribution (MTA)
Campaign A1,800
Campaign B1,200
Your Calibration Task
Calibrated Campaign A
Calibrated Campaign B
Calibrated Total
Transform your correlation to causation
The $200,000 Question

You just saw how naive correlation analysis shows 17x ROAS, while proper A/B testing reveals only 2x true return. That's the difference between wasting millions and making profitable decisions. Most businesses are flying blind, mistaking correlation for causation.

๐Ÿงช True Experiments (RCTs)
  • Customer-level randomization
  • Geo holdouts with random assignment
  • Time-based switchbacks
  • Channel incrementality (randomized)
  • Creative A/B/n tests
๐Ÿ“Š Quasi-Experiments
  • Synthetic controls (no holdouts)
  • Difference-in-Differences
  • Regression Discontinuity
  • Propensity Score Matching
  • Interrupted Time Series

When sales and ad spend both rise, itโ€™s easy to assume causation. But is the growth real, or just correlation? This simulation reveals the expensive truth of confusing the two.

Apparent Return on Ad Spend

This view suggests a 17x return, justifying aggressive spending. However, it fails to account for customers who would have converted anyway.

$1,700,000
Observed Revenue
$100,000
Ad Spend
17x
Apparent ROAS

Marketing Mix Modeling (MMM) quantifies diminishing returns (saturation) and carryover (adstock/decay) so you can invest with confidence. If your question is โ€œwhatโ€™s actually driving the business?โ€, MMM is the tool that answers it.

Answers You Get

โ€ข Where each channelโ€™s curve saturates.
โ€ข Half-life (or decay rate) of media effects.
โ€ข True channel contributions and base vs media split.

What I Deliver

Validated model + code, a scenario planner, and a budget shift recommendation, aligned to your constraints (seasonality, floors/caps, brand vs performance).

Your Stack or Mine

We can run Meridian, Robyn, or PyMC-Marketing. For fast proofs, I can stand up a clean Excel version you can audit cell-by-cell.

Step 1

Data & QA

Define KPI, align costs, de-dupe, and lock invariants.

Step 2

Quickstart MMM

Spin up a base model to surface obvious wins/risks.

Step 3

Calibration

Cross-checks, posterior predictive checks, and out-of-sample tests.

Step 4

Budget & Scenarios

Optimize to constraints; simulate shifts and expected lift.

Step 5

Handoff

Code + docs + dashboard; optional training for your team.

Find where more spend stops working and how long your marketing efforts last.

$500K

Diminishing Returns

As spend increases, each additional dollar brings back less revenue. The aim is to stop before your Marginal ROAS falls too low.

$693K
Total Attributed Revenue
1.39x
Overall ROAS
1.12x
Marginal ROAS

The more you want to learn, the more data you need.

MMM works best when you have time on your side, movement in budgets, and a focused set of questions. The tiles below outline the key signals that indicate readiness for a successful MMM project.

๐Ÿ“Š

SIGNAL

Historical Data

โ‰ฅ 2 years of weekly data (or 4-5 years monthly) allows the model to see seasonality and trends.

๐Ÿ”„

SIGNAL

Budget Movement

Flat budgets hide impact. Sensible increases and decreases are required for the model to learn.

๐Ÿงฉ

SIGNAL

Focused Questions

Every channel, control, and seasonal factor costs data. Start with a focused scope.

๐ŸŽฏ

SIGNAL

Stable KPI

Use a consistent metric like revenue or conversions. Noisy or sparse data may need aggregation.

๐Ÿ’ฐ

SIGNAL

Ad Budget

While there's no magic number, MMM becomes more cost-effective as media spend grows ($1M+/yr).

๐Ÿ› ๏ธ

SIGNAL

Model Maintenance

Markets change. Plan to retrain your model on a cadence that matches your planning cycles.

window.addEventListener('DOMContentLoaded', function() { const certs=[ {cat:"Cloud & Infrastructure",title:"Oracle AI Vector Search Certified Professional",url:"https://drive.google.com/file/d/16gWrm9HNgC4F9abYJmAy_HBVUDIJBU9_/view?usp=sharing",completed:"May 15 2025",expiry:"May 15 2027"}, {cat:"Cloud & Infrastructure",title:"LaunchDarkly Platinum Developer Certificate",url:"https://drive.google.com/file/d/1Eq9SROqD0n_XetSvMUiLfxGP6_ZLOgzD/view?usp=drive_link",completed:"Mar 17 2025",expiry:"Mar 17 2027"}, {cat:"Cloud & Infrastructure",title:"Oracle OCI 2024 Generative AI Professional",url:"https://drive.google.com/file/d/1Dr2cWU0aRILNpSTDu5WH26YitBDTOfM2/view?usp=drive_link",completed:"Jul 8 2024",expiry:"Jul 8 2026"}, {cat:"Cloud & Infrastructure",title:"Microsoft Azure Fundamentals",url:"https://drive.google.com/file/d/1VCyjzpKaPTm0Ba8t137FLyIrDeTTeekE/view?usp=sharing",completed:"Jul 9 2022"}, {cat:"Cloud & Infrastructure",title:"AXELOS ITIL Foundation Certificate in IT Service Management",url:"https://drive.google.com/file/d/1dWP8FD5saJkjHTvUDN2GKZx-t6iPAcL6/view?usp=drive_link",completed:"Nov 25 2020"}, {cat:"Data Science & Analytics",title:"The Trade Desk Edge Academy Certified: Data-Driven Planning",url:"https://www.credly.com/badges/2d928459-280d-4983-997f-9eec09232df0",completed:"Sep 03 2025"}, {cat:"Data Science & Analytics",title:"Pendo Product Analytics Certification",url:"https://www.credly.com/badges/2268ab72-cc0f-4883-94d3-31f73760e3dc/public_url",completed:"Jul 10 2025"}, {cat:"Data Science & Analytics",title:"Amplitude Specialist Marketing Analytics",url:"https://www.credly.com/badges/4fdda064-8707-4bc8-ae33-9fe95e659ff6",completed:"Jul 4 2025"}, {cat:"Data Science & Analytics",title:"DataCamp Applied Statistics in Python",url:"https://drive.google.com/file/d/1-1ossvFOIuJwQobnVm9_seZqNSZZ2iii/view?usp=sharing",completed:"Jun 25 2025"}, {cat:"Data Science & Analytics",title:"Datacamp Extreme Gradient Boosting with XGBoost",url:"https://drive.google.com/file/d/1f4GFg_cM-oQhm5wUSoTQGLgneD90QNlN/view?usp=sharing",completed:"Feb 26 2025"}, {cat:"Data Science & Analytics",title:"Vanderbilt University Generative AI Assistants Specialization",url:"https://drive.google.com/file/d/1vkF4sDKWjY_z2aFvgu-OtuLxcqNlFVTp/view?usp=sharing",completed:"Oct 5 2024"}, {cat:"Data Science & Analytics",title:"IBM AI Developer",url:"https://drive.google.com/file/d/1ZW-cFv5sRON2dL9jkqtGBZsMPmXEzJ_V/view?usp=drive_link",completed:"Oct 2 2024"}, {cat:"Data Science & Analytics",title:"WGU Machine Learning, Propensity Score & Segmentation Modeling",url:"https://drive.google.com/file/d/1D-hevCuL-u8wErT3Se03REGnJfPU0UyU/view?usp=drive_link",completed:"Sep 13 2024"}, {cat:"Data Science & Analytics",title:"John Hopkins Advanced Statistics for Data Science",url:"https://drive.google.com/file/d/14LZDoKHhSO7oXok5o3r_k_PPQq4WHEyS/view?usp=sharing",completed:"Sep 8 2024"}, {cat:"Data Science & Analytics",title:"IBM Generative AI for Data Scientists",url:"https://drive.google.com/file/d/1XLTo7C8kWizwz4aOqqlUXma2nVW-KkYy/view?usp=drive_link",completed:"Sep 1 2024"}, {cat:"Data Science & Analytics",title:"Nanyang Technological University Introduction to Complexity Science",url:"https://drive.google.com/file/d/1J7n2WRXQKx_DQBYNo3tNnAdtNbc0rOIo/view?usp=sharing",completed:"Jan 15 2024"}, {cat:"Data Science & Analytics",title:"DataCamp Discrete Event Simulation in Python",url:"https://drive.google.com/file/d/1MKadtITVudE5FvaNBgvgw7I6jNI8PAFt/view?usp=sharing",completed:"Apr 13 2023"}, {cat:"Data Science & Analytics",title:"Coursera Mediation Analysis with R",url:"https://drive.google.com/file/d/1_Z6QfmCD1KV0EXmKEjLFdF8N9KvtG4t-/view?usp=sharing",completed:"Mar 2 2023"}, {cat:"Data Science & Analytics",title:"Coursera Build Data Analysis tools using R and DPLYR",url:"https://drive.google.com/file/d/1ieuzafQHnhvCFWv1Z5kRVG87s9dOJaGm/view?usp=sharing",completed:"Jan 21 2023"}, {cat:"Data Science & Analytics",title:"Coursera Non parametric Tests using R Cmdr",url:"https://drive.google.com/file/d/1d3I-RdoYlqvRvP_pVqufZOepNZlMwIbv/view?usp=sharing",completed:"Jan 13 2023"}, {cat:"Data Science & Analytics",title:"Coursera Cluster Analysis using RCmdr",url:"https://drive.google.com/file/d/1_LPXDOh3yxTxIa-U4nPexk4MdgpactV4/view?usp=sharing",completed:"Jan 12 2023"}, {cat:"Data Science & Analytics",title:"Google Data Analytics",url:"https://drive.google.com/file/d/1yJp8P2ItPOqj2aWFHadsbAEdujpQoSbf/view?usp=sharing",completed:"Jan 4 2023"}, {cat:"Data Science & Analytics",title:"Dataquest: Data Scientist in Python",url:"https://app.dataquest.io/verify_cert/Q2DFR0C87XOEZT4YTUGF/",completed:"Dec 15 2022"}, {cat:"Data Science & Analytics",title:"DataCamp Bayesian Data Analysis in Python",url:"https://drive.google.com/file/d/1UdmuS2dEAiSdUryTCC1VUzAvgdTe74ZE/view?usp=drive_link",completed:"Aug 17 2022"}, {cat:"Data Science & Analytics",title:"WGU Udacity Data Analyst",url:"https://drive.google.com/file/d/1sN1LyTGY-DSwmKZuxKMi8JwYqMb-2VOQ/view?usp=drive_link",completed:"Jul 26 2021"}, {cat:"Data Science & Analytics",title:"CIW Data Analyst",url:"https://drive.google.com/file/d/1Zju3jGhXseXARwJf2A6NUVSuY-3qxjDG/view?usp=drive_link",completed:"Feb 10 2021"}, {cat:"Data Science & Analytics",title:"DataQuest Machine-Learning Intermediate",url:"https://drive.google.com/file/d/1Oa0iRXV5t22i8eHFir25DlZckpGxfr7r/view?usp=drive_link",completed:"Mar 20 2019"}, {cat:"Data Science & Analytics",title:"DataQuest Hypothesis Testing Fundamentals",url:"https://drive.google.com/file/d/1mkOfHE6ewV441OBY6W_upzzV-rnUrXJZ/view?usp=drive_link",completed:"Feb 7 2019"}, {cat:"Data Science & Analytics",title:"Pluralsight Statistical Models Using StatsModels",url:"https://drive.google.com/file/d/1ZCsIcXiIGNaaocqts_F8nlud6Bf4I9uS/view?usp=drive_link",completed:"Dec 17 2018"}, {cat:"Experimentation & Causal Inference",title:"Provalytics Attribution Certification",url:"https://drive.google.com/file/d/19j9qwo7q9dOMYalHCeCHm09VcKgITSRm/view?usp=sharing",completed:"Jul 20 2025"}, {cat:"Experimentation & Causal Inference",title:"Amplitude Specialist Experiment",url:"https://www.credly.com/badges/f49e34f2-8670-4f8b-8abf-6af6fbf5a94e/public_url",completed:"Jul 5 2025"}, {cat:"Experimentation & Causal Inference",title:"lifesight Modern Marketing Measurement",url:"https://drive.google.com/file/d/1rNqZlsYMAUoWYJYyMm0K148Xen0YtUCE/view?usp=sharing",completed:"Jun 30 2025"}, {cat:"Experimentation & Causal Inference",title:"adtriba Certified Marketing Measurement Expert",url:"https://drive.google.com/file/d/1yqLVo4acYq9bdmImm3z4K20_dSg_n03c/view?usp=sharing",completed:"Jun 28 2025"}, {cat:"Experimentation & Causal Inference",title:"Web Experimentation Kameleoon Platform Essentials",url:"https://drive.google.com/file/d/1iyRX27D1iPJ_aIcFDMQQGIRZHYqd4PHO/view?usp=sharing",completed:"Mar 10 2025"}, {cat:"Experimentation & Causal Inference",title:"Kameleoon AB testing certification",url:"https://drive.google.com/file/d/1CtdwaLjj4CnkKshJfNOFFRsGlsB4mud4/view?usp=sharing",completed:"Mar 09 2025"}, {cat:"Experimentation & Causal Inference",title:"UPenn Crash Course in Causality",url:"https://drive.google.com/file/d/1D89qQiu18QI6rUqzQpbg_On3VlxYdacx/view?usp=drive_link",completed:"Nov 18 2023"}, {cat:"Experimentation & Causal Inference",title:"META Measure and Optimize Social Media Marketing Campaigns",url:"https://drive.google.com/file/d/1UNCbjd0MdolHesLB-Dw2BbEeAH2yQ8iI/view?usp=sharing",completed:"May 11 2023"}, {cat:"Experimentation & Causal Inference",title:"John Hopkins Design & Interpretation of Clinical Trials",url:"https://drive.google.com/file/d/1Z9f1Zi71ZJ35yHKIlxMRYfhrZg02hxKD/view?usp=sharing",completed:"Jan 8 2023"}, {cat:"Experimentation & Causal Inference",title:"McMaster Experimentation for Improvement",url:"https://drive.google.com/file/d/1thBLg1GQxFLER-L3y-1xIVAdzl68eLjM/view?usp=sharing",completed:"Dec 19 2022"}, {cat:"Experimentation & Causal Inference",title:"Udemy Data Science Hacks - Google Causal Impact",url:"https://drive.google.com/file/d/1NEdQpoSNhzftc0VPk69dpPWRiT4kLCwl/view?usp=drive_link",completed:"Oct 15 2022"}, {cat:"Experimentation & Causal Inference",title:"Coursera Google Optimize and AB Testing",url:"https://drive.google.com/file/d/1Eos3SsL9n7_cpNONpOOXOj6s7_zgDUGV/view?usp=drive_link",completed:"Sep 2 2022"}, {cat:"Experimentation & Causal Inference",title:"Coursera Create an AB Web-page Test with Google Optimize",url:"https://drive.google.com/file/d/1pj9W80QP4LQpO4JF_0-EAWmzJ2qJy3JQ/view?usp=drive_link",completed:"Sep 2 2022"}, {cat:"Experimentation & Causal Inference",title:"DataCamp Performing Experiments in Python",url:"https://drive.google.com/file/d/1iBJWLQGcgUIN6lw-Z1-dRApXwaS8XnWC/view?usp=drive_link",completed:"Aug 10 2022"}, {cat:"Experimentation & Causal Inference",title:"Udemy AB Testing in Python",url:"https://drive.google.com/file/d/1iPB9IqLb9YZTyqAmOD5IEX4yh0XZ4Q85/view?usp=sharing",completed:"Jul 14 2022"}, {cat:"Experimentation & Causal Inference",title:"DataCamp Customer Analytics & AB Testing in Python",url:"https://drive.google.com/file/d/19XsFlHNpA5EukCzmtcw_sHJyCwctQlWd/view?usp=sharing",completed:"Jul 14 2022"}, {cat:"Experimentation & Causal Inference",title:"Udemy AB Testing & Experimentation for Beginners",url:"https://drive.google.com/file/d/1mjQ1cn_bg1VaxTSpXDk33u8HOOO_j20V/view?usp=sharing",completed:"Jul 12 2022"}, {cat:"Visualization & BI Tools",title:"Microsoft Power BI Data Analyst Associate",url:"https://drive.google.com/file/d/11mgCxEfUIhO9CuTl2D3EspaPPH3e6GUq/view?usp=sharing",completed:"Jun 27 2021",expiry:"Jun 27 2026"}, {cat:"Visualization & BI Tools",title:"LinkedIn Learning Plotly Certificate",url:"https://drive.google.com/file/d/1Honkg9SGRHAa553Aio3yyhvA_UvOWTVF/view?usp=drive_link",completed:"Oct 28 2021"}, {cat:"Visualization & BI Tools",title:"Udemy Interactive Python Dashboards with Plotly and Dash",url:"https://drive.google.com/file/d/1LVOQP4behCuh0EcqJs4SQBNaYl8em5jO/view?usp=sharing",completed:"May 9 2019"}, {cat:"Supply Chain & Customer Insights",title:"Rutgers Supply Chain Analytics",url:"https://drive.google.com/file/d/10erLBCehayluCNzrWtc1J4cbjS7Ut_p6/view?usp=drive_link",completed:"Nov 10 2023"}, {cat:"Supply Chain & Customer Insights",title:"Coursera Survey with Typeform",url:"https://drive.google.com/file/d/1AAjHJUHbfPZtfv70XXgo8q6JFki77m-w/view?usp=drive_link",completed:"Jan 7 2023"}, {cat:"Supply Chain & Customer Insights",title:"Coursera Survey in Qualtrics",url:"https://drive.google.com/file/d/1_Yi-pBOO2YH-WXFeQ9rHW_wMABkNVBUr/view?usp=drive_link",completed:"Oct 26 2021"}, {cat:"Programming & Development",title:"PluralSight C# Fundamentals",url:"https://drive.google.com/file/d/11w7H7sMgfcGpVc9NgyG2IVbf0hY8FRL3/view?usp=drive_link",completed:"May 1 2016"}, {cat:"Programming & Development",title:"edX Microsoft Office 365 APIs",url:"https://drive.google.com/file/d/1ddP4Js1wmXIUggZBraIB0E3uGxedEd-3/view?usp=drive_link",completed:"May 8 2015"}, {cat:"Programming & Development",title:"Middlesex Intermediate C# Programming",url:"https://drive.google.com/file/d/1i333HK0uIWxCuwTaj0cXKdH35Yh9gmPP/view?usp=drive_link",completed:"Sep 2 2012"}, {cat:"Other Certificates",title:"CompTIA Project+ Certification",url:"https://drive.google.com/file/d/1xRDHdOspbcB-85Aq6CvtSYwDsRCsJ-TN/view?usp=sharing",completed:"Jun 3 2020"}, {cat:"Other Certificates",title:"Vanderbilt Online Games Narrative",url:"https://drive.google.com/file/d/1rC4BiRs8qj442X_hhxoXWDLpKHoLsJsu/view?usp=drive_link",completed:"Nov 11 2013"} ]; const filters=document.getElementById("cert-filters"); const gallery=document.getElementById("cert-gallery"); const cats=[...new Set(certs.map(c=>c.cat))]; cats.unshift("All"); const shortLabels={ "All":"All", "Cloud & Infrastructure":"Cloud", "Data Science & Analytics":"Data Science", "Experimentation & Causal Inference":"Experimentation", "Visualization & BI Tools":"BI Tools", "Supply Chain & Customer Insights":"Customer", "Programming & Development":"Programming", "Other Certificates":"Other" }; cats.forEach(cat=>{ const btn=document.createElement("button"); btn.textContent=shortLabels[cat]||cat; btn.className=cat==="All"?"active":""; btn.onclick=function(){filter(cat,btn)}; filters.appendChild(btn); }); certs.forEach(c=>{ const card=document.createElement("a"); card.href=c.url; card.target="_blank"; card.className="card"; card.dataset.cat=c.cat; const titleDiv=document.createElement("div"); titleDiv.className="card-title"; titleDiv.textContent=c.title; const metaDiv=document.createElement("div"); metaDiv.className="card-meta"; metaDiv.textContent=c.completed; if(c.expiry){ const br=document.createElement("br"); metaDiv.appendChild(br); metaDiv.appendChild(document.createTextNode("Valid until "+c.expiry)); } card.appendChild(titleDiv); card.appendChild(metaDiv); gallery.appendChild(card); }); function filter(cat,btn){ filters.querySelectorAll("button").forEach(b=>b.classList.remove("active")); btn.classList.add("active"); gallery.querySelectorAll(".card").forEach(card=>{ if(cat==="All"||card.dataset.cat===cat){ card.classList.remove("hidden"); }else{ card.classList.add("hidden"); } }); } });

Contact Us

(813) 922-8725 (8139-CAUSAL)Whether you're interested in discussing potential opportunities, sharing insights about analytics challenges, or simply want to connect over shared interests in causal inference and measurement, I'd love to hear from you.

Thank You

I appreciate your message and will respond as soon as possible. Looking forward to connecting with you.